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Abstract 
Cloud provides data, resources, and storage capacity and 
computation power as services to the user which enables 
the user to perform some applications or functions without 
infrastructure investment. While performing such 
applications large volume information will be generated 
and that information is stored in cloud server to save the 
recomputing cost of them. And that information is 
classified into datasets. But third parties may recover the 
privacy sensitive information. Therefore, in existing system 
all the datasets are encrypted, but it is very time consuming 
and costly. Therefore in proposed system only few datasets 
are selected and encrypted using the novel approach. As a 
result cost of privacy protection of datasets can be reduced 
by satisfying the privacy requirement of data holders. 
Keywords :Privacy protection, Anonymization, Datasets. 
 
1 Introduction 

 
The US National Institute of Standards and 

Technology (NIST) define cloud computing as "a 
model for user convenience, on demand network 
access contribute the computing resources (e.g. 
networks, storage, applications, servers, and services) 
that can be rapidly implemented with minimal 
management effort or service provider interference" 
Cloud computing can also be defined as it is a new 
service, which are the collection of technologies and 
a means of supporting the use of large scale Internet 
services for the remote applications with good quality 
of service (QoS) levels. Cloud computing is has 
many technologies such as Saa i.e. "Software as a 
Service", Paas i.e. "Platform as a Service", IaaS i.e. 
Infrastructure as a Service". Cloud Computing is a 
paradigm that focuses on sharing data and 
computations over a scalable network of nodes. 
Examples of such nodes include end user computers, 
data centers, and Cloud Services. 
 

Cloud service delivery is divided among 
three archetypal models and various derivative 
combinations. The three fundamental classifications 
are often referred to as the -SPI Model where SPI' 
refers to Software, Platform or Infrastructure (as a 
Service), respectively defined. 
 
 

1.1 Cloud Service Models. 
• Cloud Software as a Service (SaaS): The 

capability provided to the consumer is to use the 
provider's applications running on a cloud 
infrastructure. The applications are accessible from 
various client devices through a thin client interface 
such as a web browser (e.g., web-based email) 

• Cloud Platform as a Service (PaaS): The 
capability provided to the consumer is to deploy onto 
the cloud infrastructure consumer-created or acquired 
applications created using programming languages 
and tools supported by the provider (e.g., 
configurations) 

• Cloud Infrastructure as a Service (IaaS): 
The capability provided to the consumer is to 
provision processing, storage, networks, and other 
fundamental computing resources where the 
consumer is able to deploy and run arbitrary 
software, which can include operating systems and 
applications.(e.g., host fire walls). 
 

Cloud computing is technically regarded as 
an ingenious combination of a series of technologies, 
establishing a novel business model by offering IT 
services and using economies of scale. Participants in 
the business chain of cloud computing can benefit 
from this novel model. Cloud customers can save 
huge capital investment of IT infrastructure, and 
concentrate on their own core business [1]. 
Therefore, many companies or organizations have 
been migrating or building their business into cloud. 
However, numerous potential customers are still 
hesitant to take advantage of cloud due to security 
and privacy concerns [2]. 
 

The privacy concerns caused by retaining 
data sets in cloud are important. Storage and 
computation services in cloud are equivalent from an 
economical perspective because they are charged in 
proportion to their usage. Thus, cloud users can store 
valuable data sets selectively when processing 
original data sets in data intensive applications like 
medical diagnosis, in order to curtail the overall 
expenses by avoiding frequent re-computation to 
obtain these data sets. Usually, intermediate data sets 
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in cloud are accessed and processed by multiple 
parties, but rarely controlled by original data set 
holders. This enables an adversary to collect 
intermediate data sets together and menace privacy-
sensitive information from them, bringing 
considerable economic loss or severe social 
reputation impairment to data owners. 
 

Existing technical approaches for preserving 
the privacy of data sets stored in cloud mainly 
include encryption and anonymization. Encrypting all 
data sets, a straightforward and effective approach, is 
widely adopted in current research [3], [4], [5]. 
Processing on encrypted data sets efficiently is a 
challenging task, because most existing applications 
only run on unencrypted data sets. Although recent 
progress has been made in homomorphic encryption 
which theoretically allows performing computation 
on encrypted data sets, applying current algorithms 
are rather expensive due to their inefficiency. On the 
other hand, partial information of data sets, e.g., 
aggregate information, is required to expose to data 
users in most cloud applications like data mining and 
analytics. In such cases, data sets are anonymized 
rather than encrypted to ensure both data utility and 
privacy preserving. Current privacy-preserving 
techniques can withstand most privacy attacks on one 
single data set, while preserving privacy for multiple 
data sets is still a challenging problem. Thus, for 
preserving privacy of multiple data sets, anonymize 
all data sets first and then encrypt them before storing 
or sharing them in cloud. The volume of intermediate 
data sets is huge. Hence, that encrypting all 
intermediate data sets will lead to high overhead and 
low efficiency when they are frequently accessed or 
processed. Therefore, only part of datasets is 
encrypted rather than all for reducing privacy-
protection cost. 
 

In this paper, a novel approach is used to 
identify which intermediate data sets need to be 
encrypted while others do not, in order to satisfy 
privacy requirements given by data holders. A tree 
structure is modeled from generation relationships of 
data sets to analyze privacy propagation of data sets. 
As quantifying joint privacy leakage of multiple data 
sets efficiently is challenging, an upper bound 
constraint is exploit to confine privacy disclosure. 
Based on such a constraint, the problem of saving 
privacy-protection cost as a constrained optimization 
problem is modeled. This problem is then divided 
into a series of sub-problems by decomposing 
privacy leakage constraints. Finally, design a 
practical heuristic algorithm is designed accordingly 
to identify the data sets that need to be encrypted. 
Experimental results on real-world and extensive data 

sets demonstrate that privacy-protection cost of 
intermediate data sets can be significantly reduced 
with our approach over existing ones where all data 
sets are encrypted. 

 
There are three major contributions. First, 

we formally demonstrate the possibility of ensuring 
privacy leakage requirements without encrypting all 
data sets when encryption is incorporated with 
anonymization to preserve privacy. Second, a 
practical heuristic algorithm is designed to identify 
which data sets need to be encrypted for privacy 
protection while the rest of them do not. Third, 
experiment results demonstrate that our approach can 
significantly reduce privacy-protection cost over 
existing approaches, which is quite beneficial for the 
cloud users who utilize cloud services in a pay-as-
you-go fashion. 

 
2 Related Work 
 

Encryption is currently exploited by most 
existing research to ensure the data privacy in cloud 
[3], [4], [5]. Although encryption works well for data 
privacy in these approaches, it is necessary to encrypt 
and decrypt data sets frequently in many applications. 
Encryption is usually integrated with other methods 
to achieve cost reduction, high data usability and 
privacy protection. Roy et al. [8] investigated the data 
privacy problem caused by MapReduce and 
presented a system named Airavat which 
incorporates mandatory access control with 
differential privacy. Puttaswamy et al. [9] described a 
set of tools called Silverline that identifies all 
functionally encryptable data and then encrypts them 
to protect privacy. Zhang et al. [10] proposed a 
system named Sedic which partitions MapReduce 
computing jobs in terms of the security labels of data 
they work on and then assigns the computation 
without sensitive data to a public cloud. The 
sensitivity of data is required to be labeled in advance 
to make the above approaches available. Ciriani et al. 
proposed an approach that combines encryption and 
data fragmentation to achieve privacy protection for 
distributed data storage with encrypting only part of 
data sets. But integrate data anonymization and 
encryption together to fulfill cost-effective privacy 
protection. 
 

The importance of retaining data sets in 
cloud has been widely recognized, but the research 
on privacy issues incurred by such data sets just 
commences. Davidson et al. [11], studied the privacy 
issues in workflow provenance, and proposed to 
achieve module privacy preserving and high utility of 
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provenance information via carefully hiding a subset 
of intermediate data. This general idea is similar to 
focuses on data privacy protection from an 
economical cost perspective while theirs concentrates 
majorly on functionality privacy of workflow 
modules rather than data privacy and also differs 
from theirs in several aspects such as data hiding 
techniques, privacy quantification and cost models. 
 

The PPDP research community has 
investigated extensively on privacy-protection issues 
and made fruitful progress with a variety of privacy 
models and protection methods. Privacy principles 
such as k-anonymity [12] and l-diversity are put forth 
to model and quantify privacy, yet most of them are 
only applied to one single data set. Privacy principles 
for multiple data sets are also proposed, but they aim 
at specific scenarios such as continuous data 
publishing or sequential data releasing. The research 
in [13], exploits information theory to quantify the 
privacy via utilizing the maximum entropy principle. 
 
3 Motivating Example 
 

A motivating scenario is illustrated in Fig. 1 
where an online health service provider, e.g., 
Microsoft HealthVault, has moved data storage into 
cloud for economical benefits. Original data sets are 
encrypted for confidentiality. Data users like 
governments or research centers access or process 
part of original data sets after anonymization. Data 
sets generated during data access or process are 
retained for data reuse and cost saving. Two 
independently generated intermediate data sets (Fig. 
1a) and (Fig. 1b) in Fig. 1 are anonymized to satisfy 
2-diversity, i.e., at least two individuals own the same 
quasi-identifier and each quasi-identifier corresponds 
to at least two sensitive values. Knowing that a lady 
aged 25 living in 21,400 (corresponding 
quasiidentifier is h214_; female; youngi) is in both 
data sets, an adversary can infer that this individual 
suffers from HIV with high confidence if Fig. 1a and 
Fig. 1b are collected together. Hiding Fig. 1a or Fig. 
1b by encryption is a promising way to prevent such 
a privacy breach. Assume Fig. 1a and Fig. 1b are of 
the same size, the frequency of accessing Fig. 1a is 
10 and that of Fig. 1b is 100. We hide Fig. 1a to 
protect privacy because this can incur less expense 
than hiding Fig. 1b. In most real-world applications, a 
large number of data sets are involved. Hence, it is 
challenging to identify which data sets should be 
encrypted to ensure that privacy leakage 
requirements are satisfied while keeping the hiding 
expenses as low as possible. 

    

 
 

Fig.1: A scenario showing privacy threats 
due to data sets. 

 
3.1 Problem Analysis 
 
3.1.1 Sensitive Intermediate Data Set Management 

Data provenance is employed to manage 
intermediate data sets in this research. Provenance is 
commonly defined as the origin, source or history of 
derivation of some objects and data, which can be 
reckoned as the information upon how data were 
generated. Reproducibility of data provenance can 
help to regenerate a data set from its nearest existing 
predecessor data sets rather than from scratch. Here, 
the information recorded in data provenance is 
leveraged to build up the generation relationships of 
data sets. 
 

There are several basic notations below. Let 
do be a privacy-sensitive original data set. We use D 
= {d1, d2, . . . , dn} to denote a group of data sets 
generated from do where n is the number of data sets. 
Note that the notion of data herein refers to both 
intermediate and resultant data. Directed Acyclic 
Graph (DAG) is exploited to capture the topological 
structure of generation relationships among these 
data sets. 
 
Definition 1 (Sensitive intermediate data set graph) 
 
A DAG representing the generation relationships of 
data sets D from do is defined as a Sensitive 
Intermediate data set Graph, denoted as SIG. 
Formally, SIG = {V ,E}, where V = {do] U D, E is a 
set of directed edges. A directed edge {dp, dc} in E 
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means that part or all of dc is generated from dp, 
where dp, dc ε {do} U D. 
 
Definition 2(Sensitive intermediate data set tree 
(SIT)) 

 
An SIG is defined as a Sensitive data set 

Tree if it is a tree structure. The root of the tree is do. 
An SIG or SIT not only represents the generation 
relationships of an original data set and its 
intermediate data sets, but also captures the 
propagation of privacy-sensitive information among 
such data sets. Generally, the privacy sensitive 
information in do is scattered into its offspring data 
sets. Hence, an SIG or SIT can be employed to 
analyze privacy disclosure of multiple data sets. In 
this paper, an SIT is first developed, and then extends 
it to an SIG with minor modifications. 
 

An data set is assumed to have been 
anonymized to satisfy certain privacy requirements. 
However, putting multiple data sets together may still 
invoke a high risk of revealing privacy-sensitive 
information, resulting in violating the privacy 
requirements. Privacy leakage of a data set d is 
denoted as PLs(d), meaning the privacy-sensitive 
information obtained by an adversary after d is 
observed. The value of PLs(d) can be deduced 
directly from d. Similarly, privacy leakage of 
multiple data sets in D is denoted as PLm(D), 
meaning the privacy-sensitive information obtained 
by an adversary after all data sets in D are observed. 
It is challenging to acquire the exact value of PLm(D) 
due to the inference channels among multiple data 
sets [13]. 
 
3.2.2 Privacy-Protection Cost Problem 
 

Privacy protection cost of data sets stems 
from frequent en/decryption with charged cloud 
services. Cloud service venders have set up various 
pricing models to support the pay-as-you-go model, 
e.g., Amazon Web Services pricing model. 
Practically, en/decryption needs computation power, 
data storage, and other cloud services. To avoid 
pricing details and focus on the discussion of our core 
ideas, combine the prices of various services required 
by en/decryption into one. This combined price is 
denoted as PR. PR indicates the overhead of 
en/decryption on per GB data per execution. 
 

An attribute vector is employed to frame 
several important properties of the data set di. The 
vector is denoted as {Si, Flagi, fi, PLi}. The term Si 
represents the size of di. The term Flagi, a dichotomy 
label, signifies whether di is hidden. The term fi 

indicates the frequency of accessing or processing di. 
If di is labeled as hidden, it will be en/decrypted 
every time when accessed or processed. Thus, the 
larger fi is, the more cost will be incurred if di is 
hidden. Usually, fi is estimated from the data 
provenance. The term PLi is the privacy leakage 
through di, and is computed by PLs(di). 
 

Data Sets in D can be divided into two sets. 
One is for encrypted data sets, denoted as Denc. The 
other is for unencrypted data sets, denoted as Dune. 
Then, the equations Denc U Dune = D and Denc ∩ 
Dune = ε hold. The pair {Denc, Dune} is defined as a 
global privacy-protection solution. The privacy 
protection cost incurred by a solution {Denc, Dune} 
is denoted as Cpp({Denc, Dune}). With the notations 
framed above, the cost Cpp({Denc, Dune}) in a given 
period [T0, T], can be deduced by the following 
formula: 

Cpp({Denc, Dune}) = ε (ΣdiϵDenc Si ∙ PR ∙ 
fi ∙ t) ∙ dt. 

 
The privacy-preserving cost rate for 

Cpp({Denc, Dune}), denoted as CRpp, is defined as 
follows: 

CRpp = Σ di ε Denc Si ∙ PR ∙ fi. 
 

In the real world, Si and fi possibly vary 
over time, but here they are static so that we can 
concisely present the core ideas of our approach. The 
dynamic case will be explored in our future work. 
With this assumption, CRpp determines Cpp({Denc, 
Dune}) in a given period. The problem of how to 
make privacy-protection cost as low as possible given 
an SIT can be modeled as an optimization problem 
on CRpp: 

Minimize CRpp = Σ di ε Denc Si ∙ PR ∙ fi, 
Denc  

 
The privacy leakage caused by unencrypted 

data sets in Dune must be under a given threshold. 
 
Definition 3 (Privacy leakage constraint) 

Let ε be the privacy leakage threshold 
allowed by a data holder, then a privacy requirement 
can be represented as PLm(Dune) ≤ ε, Dune. This 
privacy requirement is defined as a Privacy Leakage 
Constraint, denoted as PLC. 

With a PLC, the problem becomes a 
constrained optimization problem. So, we can save 
privacy-protection cost by minimizing it. As it is 
challenging to obtain the exact value of PLm(Dune), 
this approach is to address the problem via 
substituting the PLC with one of its sufficient 
conditions. 
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4 Privacy Protection and Privacy Leakage 
of Novel Approach 
 

It is fundamental to measure privacy leakage 
of anonymized data sets to quantitatively describe 
how much privacy is disclosed. 

 
4.1 Single Intermediate Data Set Privacy 
Representation 
 

The privacy-sensitive information is 
essentially regarded as the association between 
sensitive data and individuals. An original sensitive 
data set is denoted as do; an anonymized intermediate 
data set is denoted as d*; the set of sensitive data as 
SD; and the set of quasi-identifiers as QI. Let S 
denote a random variable ranging in SD, and Q be a 
random variable ranging within QI. Suppose s ε SD 
and q ϵ QI. The joint possibility of an association {s, 
q}, denoted as p(S = s, Q = q) (abbr. p(s, q)), is the 
information that adversaries intend to recover [13]. 
When an adversary has observed d* and a quasi-
identifier q, the conditional possibility p(S = s|Q = q) 
representing intrinsic privacy-sensitive information 
of an individual can be inferred. If p(S = s|Q = q) is 
deduced as a high value or even 1.0, the privacy of 
the individual with q will be awfully breached. 

 
The approach proposed in is employed to 

compute the probability distribution P*(S,Q) of {s, q} 
in do after observing d*. Formally, PLs(d*) is 
defined as  

PLs(d*) = H(S,Q) – H*(S,Q)  
 
H(S,Q) is the entropy of random variable 

{S,Q} before d* is observed, while H*(S,Q) is that 
after observation. P(Q, S) is estimated as a uniform 
distribution according to the maximum entropy 
principle [25]. Based on this, H(S,Q) can be 
computed by H(S,Q) = log(|QI| ∙ |SD|). H∙(S,Q) is 
calculated from distribution P*(S,Q) by 

H*(S,Q) = - Σ q ε QI,s ε SA р(s, q) ∙ log(p(s, 
q)) 
 
4.2 Privacy Leakage of Multiple Intermediate Data 
Sets  
 

The value of the joint privacy leakage 
incurred by multiple data sets in D = {d1, d2, . . . , 
dn}, n ε N, is defined by 

PLm(D) = H(S,Q) – HD(S,Q) 
 
H(S,Q) and HD(S,Q) are the entropy of 

{S,Q} before and after data sets in D are observed, 

respectively. H(S,Q) = log(|QI| ∙ |SD|). HD(S,Q) can 
be calculated once P(S,Q) is estimated after data sets 
in D are observed. Given the relationship between ϵ 
and PLm(Dune) in PLC, ε ranges in the interval 
[max1≤i≤n{PLs(di)}, log(|QI| ∙ |SA|)]. 
 

Zhu et al. [13] proposed an approach to 
indirectly estimate P(S,Q) for multiple data sets with 
the maximum entropy principle. But this approach 
becomes inefficient when many data sets are 
involved because the number of variables and 
constraints possibly increase sharply when the 
number of data sets grows. According to the 
experiments in [13], it takes more than 200 minutes 
to quantify the privacy of two data sets with 6,000 
records. Further, since Dune is uncertain before a 
solution is found, we need to try different Dune, 
where Dune ε 2D. So, the inefficiency will become 
unacceptable in many applications where a large 
number of intermediate data sets are involved.  
 

Fortunately, the PLC can be achieved 
without exactly acquiring PLm(Dune) because our 
goal is to control the privacy disclosure caused by 
multiple data sets. A promising approach is to 
substitute the PLC with its sufficient conditions. 
Specifically, our approach is to replace the exact 
value of PLm(Dune) with one of its upper bounds 
which can be calculated efficiently. 
 
4.3 Privacy-Protection Cost Reducing Algorithm 
 

In this section, a algorithm is designed to 
reduce privacy-protection cost. In the state search 
space for an SIT, a state node SNi in the layer Li 
herein refers to a vector of partial local solutions, i.e., 
SNi corresponds to { ε1j1, . . . , _ εiji }. Note that the 
state-search tree generated according to an SIT is 
different from the SIT itself, but the height is the 
same. Appropriate heuristic information is quite vital 
to guide the search path to the goal state. The goal 
state in our algorithm is to find a near-optimal 
solution in a limited search space. 

 
Heuristic values are obtained via heuristic 

functions. A heuristic function, denoted as f(SNi), is 
defined to compute the heuristic value of SNi. 
Generally, f(SNi) consists of two parts of heuristic 
information, i.e., f(SNi) = g(SNi) + h(SNi), where the 
information g(SNi) is gained from the start state to 
the current state node SNi and the information h(SNi) 
is estimated from the current state node to the goal 
state, respectively. 
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Intuitively, the heuristic function is expected 
to guide the algorithm to select the data sets with 
small cost but high privacy leakage to encrypt. Based 
on this, g(SNi) is defined as g(SNi) = Ccur/( ε - i+1), 
where Ccur is the privacy-protection cost that has 
been incurred so far, ε is the initial privacy leakage 
threshold, and ε i+1 is the privacy leakage threshold 
for the layers after Li. Specifically, Ccur is calculated 
by Ccur = Σ dj ε U k=1 EDk (Sj ∙ PR ∙ fj). The 
smaller Ccur is, the smaller total privacy-protection 
cost will be. Larger (ε - ε i+1) means more data sets 
before Li+1 remain unencrypted in terms of the RPC 
property, i.e., more privacy protection expense can 
saved. 
 

The value of h(SNi) is defined as h(SNi) = 
(ε i+1∙ Cdes ∙ BFAVG)/PLAVG. Similar to the 
meaning of (ε - ε i+1) in g(SNi), smaller ε i+1 in 
h(SNi) implies more data sets before Li+1 are kept 
unencrypted. If a data set with smaller depth in an 
SIT is encrypted, more data sets are possibly 
unencrypted than that with larger depth, because the 
former possibly has more descendant data sets. For a 
state node SNi, the data sets in its corresponding EDk 
are the roots of a variety of subtrees of the SIT. These 
trees constitute a forest, denoted as F ε i. In h(SNi), 
Cdes represents the total cost of the data sets in F ε i. 
Potentially, the less Cdes is, the fewer data sets in 
following layers will be encrypted. BFAVG is the 
average branch factor of the forest Fεi , and can be 
computed by BFAVG = NE/NI , where NE is the 
number of edges and NI is the number of internal 
data sets in Fεi . Smaller BFAVG means the search 
space for sequent layers will be smaller, so that we 
can find a nearoptimal solution faster. The value of 
PLAVG indicates the average privacy leakage of data 
sets in Fεi. Heuristically, the algorithm prefers to 
encrypt the data sets which incur less cost but 
disclose more privacy-sensitive information. Thus, 
higher PLAVG means more data sets in Fᴨi should 
be encrypted to preserve privacy from a global 
perspective. 
 
 
Algorithm 1: Privacy Protection Cost Reducing 
Heuristic 
 
Description: - Iteratively identifies the datasets that 
need to be encrypted; achieving a low level privacy-
protection cost under the constraint PCL1. 
 
Input: - A SIT with root do; all attribute values of 
each datasets are given, i.e., size, frequency, privacy 
leakage; privacy requirement threshold ε. 
 

Output: - A vector of local solutions { ε 1, ….. , ε h} 
that comprise a near-optimal global privacy-
protection solutions; and the global privacy-
protection cost Cglobal. 
 
Step 1- Initialize the following variables 
1.1 Define a priority queue: PQueue. 
1.2 Construct the initial search node with the root of 

the SIT:  
SN0 = {{ ε 0} ← {{do}, ε,f(SN) ←0,ED0 

← {do}, Ccur ← 0, ε 1 ← ε }, i.e., the five 
parameters are the current solutions, the current 
heuristic value, the current ED, the current cost 
and the privacy leakage requirement for the 
sequent layer. 

1.3  SN0. 
 
Step 2- Iteratively retrieve the search nodes from 
PQueue, and in turn add their child search node to 
PQueue. 
2.1 Retrieve the search node with the highest 
heuristics from PQueue: SN1 ← PQueue. 
2.2 Check whether ED1 = ε. If yes, a solution is 
found and the algorithm will go to step 3. 
2.3 Label the datasets in CDEi as encrypted if their 
privacy leakage is larger than ε i. Sort  the unlabeled 
datasets un CDEi acsendingly according to Ck/PLs 
(dk), dk ε CDEi: SORT(CDEi). If the number of 
unlabeled datasets are larger than M, only the first M 
datasets are considerd to generate candidate nodes. 
2.4 Generate all the possible local solutions in Ai. 
2.5 Select a solution from Ai: ε ← SELECT(Ai).: 

1) Calculate the privacy leakage upper 
bound of this solution and the encryption 
cost: PLlocal ← ΣdεUDε PLs(d), Clocal ← 
ΣdεUDε (Sk ∙ CR ∙ fk), where ε ={EDε, 
UDε}. 

 2) Calculate the remaining privacy leakage 
εi+1 ← εi.- PLlocal. 
2.6 Compute the heuristic value. 
2.7 Construct new search node from the obtained 
values, add it to PQueue. Then go to Step 2.1. 
 
Step 3- Obtain the global encryption cost Cglobal : 
Cglobal ← Ccur, and the corresponding solution {ε1, 
….., εh}. 
 

Algorithm 1 specifies the details of the 
heuristic algorithm. A priority queue is exploited to 
keep state nodes. Only the qualified state nodes that 
are added to the priority queue, i.e., the 
corresponding partial global solutions are feasible. To 
avoid the size of the priority queue increase 
dramatically, the algorithm only retains the state 
nodes with top K highest heuristic values. When 
determining to add child search nodes in layer Li+1 
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into the priority queue, the algorithm generates a 
local encryption solution from CDEi at first. The 
algorithm probably suffers from poor efficiency 
because it has to check all combinations of data sets 
in CDEi. To circumvent this situation, the algorithm 
sorts the data sets in CDEi according to the value 
Ck/PLs(dk), where dk ε CDEi and Ck = Sk ∙ PR ∙ fk. 
If |CDEi| is larger than a threshold M, only the first 
M data sets in the sorted CDEi will be examined 
while the remaining is set to be encrypted. 
Intuitively, data sets with higher privacy protection 
cost and lower privacy leakage are expected to 
remain unencrypted. The value Ck/PLs(dk) can help 
to guide the algorithm to find these data sets with a 
higher possibility. Hence, the algorithm is guided to 
approach the goal state in the state space as close as 
possible. Above all, in the light of heuristic 
information, the proposed algorithm can achieve a 
near optimal solution practically. 
 
5 Conclusion and Future work 
 

In this paper, novel approach is proposed 
that identifies which part of data sets needs to be 
encrypted while the rest does not based on their size, 
frequency, and privacy leakage requirement in order 
to save the privacy-protection cost. A tree structure 
has been modeled from the generation relationships 
of data sets to analyze privacy propagation among 
data sets. The problem of saving privacy preserving 
cost as a constrained optimization problem which is 
addressed by decomposing the privacy leakage 
constraints is modeled. A practical heuristic 
algorithm has been designed accordingly. 
 

In accordance with various data and 
computation intensive applications on cloud, data set 
management is becoming an important research area. 
Privacy protection for data sets is one of important 
yet challenging research issues, and needs intensive 
investigation. With the contributions of this paper, 
planning to further investigate privacy aware efficient 
scheduling of intermediate data sets in cloud by 
taking privacy protection as a metric together with 
other metrics such as storage and computation. 
Optimized balanced scheduling strategies are 
expected to be developed toward overall highly 
efficient privacy aware data set scheduling. 
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